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Abstract This project aims at computation excited-state energy eigenvalues and
wave-function of a particle under Gaussian asymmetric double-well potential using
numerical shooting method and perturbation theory a method to deal with discrete-
eigenvalue problems. We also compare the energy eigenvalue and wave-function with
those obtained from other typical means popular among physics students, namely the
numerical shooting method and perturbation theory. Show that the idea of program of
the numerical shooting method and perturbation theory of this problem (see Sects. 2.1
and 4) The numerical shooting method is generally regarded as one of the most efficient
methods that give very accurate results because it integrates the Schrödinger equation
directly, though in the numerical sense. The n = even case is shown in Figs. 4, 5 and
6. In this case, the wave-function has split up on asymmetric nodes under Gaussian
asymmetric double-well potential. The n = odd case is shown in Fig. 7. In this case,
the wave-function has not split up on asymmetric nodes under Gaussian asymmetric
double-well potential.
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1 Introduction

In quantum mechanics, the stationary-state Schrödinger equation for complex systems
is generally too difficult to solve exactly and one must again rely on approximation
methods. There exist several means to study them, e.g. time-independent perturbation
theory [1], the WKB approximation [2], the variation method [1–3] and the analytical
transfer matrix method [4,5] ect. The Schrödinger equation have proposed various
analytical and numerical methods for the solution of this central quantum mechanics
equation, approaches even to one-dimensional solutions are still a subject of debate.
This is confirmed by the continuing appearance of new publications in this field [6–8].
Boyd L.Earl used the harmonic oscillator Gaussian perturbation to evaluate frequency
“doubling” in the vibrational spectrum of ammonia [9]. In this project we present
two of the most important types of approximation methods which are useful under
different conditions.

The scheme of the paper is as follows. In Sect. 2 detailing with the perturbation
theory and calculation of energy eigenvalue for Gaussian asymmetric double-well
potential. In Sect. 3 the Schrödinger equation and the potential in terms of the new
variable and parameter is given by

d2ψ(ξ)

dξ2 +
(
ε − ξ2 − 2ae−bξ2

)
ψ(ξ) = 0, V (ξ) = ξ2 + 2ae−bξ2

.

The numerical shooting method and result is given in Sect. 4. The main principle of
numerical shooting method is to subdivide the domain into many tiny segment each
of which possesses a constant potential. We conclusion in Sect. 5 with a discussion.

2 Time-independent perturbation theory: the non-degenerate

The approximation method we consider here is time-independent perturbation theory
[1–3] sometimes known as the Rayleigh–Schrödinger perturbation theory. Consider
a system whose Hamiltonian can be dissociated into separate parts, one part corre-
sponding to the unperturbed system and the other part representing the perturbation.
We can write the total Hamiltonian then as

Ĥ = Ĥ(0) + gV (1)

where Ĥ(0) represents the unperturbed part of the Hamiltonian whose eigenfunction
and eigenvalues are assumed to be known and V is a small perturbative potential of
the order of g in smallness. Suppose the problem to be solved is of the Schrödinger
form

Ĥψn = Enψn, (2)

assuming that the unperturbed problem

Ĥ(0)ψ
(0)
n = E (0)n ψ(0)n (3)
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has already been solved. In the example mentioned above, that of a hydrogen atom in
an external electric field, Ĥ(0) is the Hamiltonian describing the unperturbed hydrogen

atom with eigenfunctionsψ(0)n and gV is the perturbation corresponding to the applied
field.

From our supposition that the perturbation is small, it is reasonable to assume that
the energy eigenvalues for the complete problem can be written as

En = E (0)n + gE (1)n + g2 E (2)n + · · · (4)

where E (0)n is the unperturbed energy eigenvalue and gE (1)n is the first-order cor-
rection to the energy, g2 E (2)n is the second-order correction to the energy, etc. The
wave-function can also be expand in powers of the perturbation parameter g as

ψn = ψ(0)n + gψ(1)n + g2ψ(2)n + · · · . (5)

By substituting Eqs. (1), (4) and (5) into Eq. (2), we obtain

(
Ĥ(0) + gV

) (
ψ(0)n + gψ(1)n + g2ψ(2)n + · · ·

)
=

(
E (0)n + gE (1)n + g2 E (2)n + · · ·

)

×
(
ψ(0)n + gψ(1)n +g2ψ(2)n + · · ·

)
.

(6)

The factor g reflects the order of approximation in the expansion of the eigenvalue
eigenvectors, and the potential. Zeroth order corresponds to g = 0, the unperturbed
solution. First order corresponds to g, second order to g2, etc. In order for the equality
to hold, terms of the same order must be equal. Therefore, equating terms of equal
order, which are easily grouped since the power of g in each term determines its order,
yields

Ĥ(0)ψ
(0)
n = E (0)n ψ(0)n (7)

for zeroth order,

Ĥ(0)gψ
(1)
n + gVψ(0)n = E (0)n gψ(1)n + gE1

nψ
(0)
n (8)

for first order, and

g2 Ĥ(0)ψ
(2)
n + g2Vψ(1)n = g2 E (0)n ψ(2)n + g2 E (1)n ψ(1)n + g2 E (2)n ψ(0)n (9)

for second order.
The first-order term leads to an expression for the first-order correction to the

energy eigenvalues. This can be determined as follows. Dividing out the factor of g
from Eq. (8) yields

Ĥ(0)ψ
(1)
n + Vψ(0)n = E (0)n ψ(1)n + E1

nψ
(0)
n . (10)
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Multiplying through on each side by the complex conjugate of ψ(0)n and integrating
over all space, we find that Eq. (10) becomes

∫
ψ(0)∗n Ĥ(0)ψ

(1)
n d3r +

∫
ψ(0)∗n Vψ(0)n d3r =

∫
ψ(0)∗n E (0)n ψ(1)n d3r +

∫
ψ(0)∗n E1

nψ
(0)
n d3r.

(11)

Making use of the hermiticity of Ĥ(0) we can write the first term on the left-hand side
of Eq. (11) as

∫
ψ(0)∗n Ĥ(0)ψ

(1)
n d3r =

∫ (
Ĥ(0)ψ

(0)
n

)∗
ψ(1)n d3r =

∫
ψ(0)∗n E (0)n ψ(1)n d3r. (12)

Therefore the expression for E (1)n , the first-order correction to the energy, is

E (1)n =
∫
ψ
(0)∗
n V (r)ψ(0)n d3r∫
ψ
(0)∗
n ψ

(0)
n d3r

. (13)

To find the second-order correction to the energy, we start with the second-order
equation, Eq. (9):

Ĥ(0)ψ
(2)
n + Vψ(1)n = E (0)n ψ(2)n + E (1)n ψ(1)n + E (2)n ψ(0)n . (14)

Multiply Eq. (14) on each side by ψ(0)∗n and integrate over all space to yield

∫
ψ(0)∗n Vψ(1)n d3r = E (1)n

∫
ψ(0)∗n ψ(1)n d3r + E (2)n

∫
ψ(0)∗n ψ(0)n d3r. (15)

By substituting

ψ(1)n =
∑

m

Amψ
(0)
m ,

ψ
(1)
n′ = −

∑
m �=n′

Vmn′[
E (0)m − E (0)n′

]ψ(0)m

back into the right-hand side and left-hand side, respectively of Eq. (15), we get

E (2)n =
∑
m �=n

|Vmn|2
E (0)n − E (0)m

, (16)

where Vmn = 〈m|V |n〉 = ∫
ψ
(0)∗
m Vψ(0)n d3r .
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Fig. 1 Potential for a particle
under Gaussian asymmetric
double-well. By setting a =
15, b = 100, λ = 0.01

2.1 The perturbation theory: Gaussian asymmetric double-well potential

Our potential energy of interest in this project is the Gaussian harmonic oscillator
asymmetric double-well potential [9,15] represent by

V (x) = 1

2
mω2x2 + λ x3 + ae−bx2

(17)

where λ, a and b are positive real constant and λ are relatively small (see Fig. 1). In
this case, the famous harmonic oscillator solutions for ψ(0)n and E (0)n are

ψ(0)n (ξ) = An Hn(ξ)e
−ξ2/2,

E (0)n =
(

n + 1

2

)
h̄ω, n = 0, 1, 2, 3, . . . (18)

where An = (2nn!)
(

mω
π h̄

) 1
4

is the normalized factor. The polynomials Hn(ξ) are,

except for the normalization constants, the Hermite polynomial Hn(ξ), whose proper-
ties can be found in any number of textbooks on mathematical physics. By substituting
Eq. (18) back into Eqs. (13) and (16), we can now finally write the total energy eigen-
value for Gaussian asymmetric double-well potential. They are

En =
(

n + 1

2

)
h̄ω +

∞∫

−∞

(
ψ(0)n (ξ)

)2 (
λ x3 + ae−bx2

)
dx . (19)

Since
(
ψ
(0)
n (ξ)

)2
is an even function of x and x3 is odd function, the contribution

of the cubic term to the integral is zero. Thus the first order perturbation energy
(E (1)n = 〈n| λ x3|k〉 = 0) for the term λ x3 is zero. By substituting λ x3 into Eq. (16),
we have the second-order perturbation energy [10]
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E (2)n = |〈n| λ x3|n + 3〉|2
E (0)n − E (0)n+3

+ |〈n| λ x3|n + 1〉|2
E (0)n − E (0)n+1

+|〈n| λ x3|n − 1〉|2
E (0)n − E (0)n−1

+ |〈n| λ x3|n − 3〉|2
E (0)n − E (0)n−3

. (20)

The required matrix elements are

〈n| λ x3|n + 3〉 = λ〈n|x2|n + 2〉〈n + 2|x |n + 3〉,
〈n| λ x3|n + 1〉 = λ

{〈n|x2|n + 2〉〈n + 2|x |n + 1〉 + 〈n|x2|n〉〈n|x |n + 1〉},
〈n| λ x3|n − 1〉 = λ

{〈n|x2|n − 2〉〈n − 2|x |n − 1〉 + 〈n|x2|n〉〈n|x |n − 1〉},
〈n| λ x3|n − 3〉 = λ〈n|x2|n − 2〉〈n − 2|x |n − 3〉. (21)

Thus, we use the lowering and raising operators â and â† into Eq. (21) thus into
Eq. (20), we can now finally write the second-order correction to the eigenenergies

E (2)n = − 15 λ2

4h̄ωα3

(
n2 + n + 11

30

)
. (22)

Then

En =
(

n + 1

2

)
h̄ω +

∞∫

−∞

(
ψ(0)n (ξ)

)2 (
ae−bx2

)
dx − 15 λ2

4h̄ωα3

(
n2 + n + 11

30

)
. (23)

Logic of calculate energy eigenvalues by the perturbation theory of Gaussian asym-
metric double-well potential

– Input values a, b, n,λ in mathematica programm.
– Input the wave-function to the harmonic oscillator in mathematica programm.
– Calculate energy eigenvalue.

For example, numerical evaluation of energy of Gaussian asymmetric double-well
potential. Consider the following program:

– In[1]:= Clear[a, b, n, λ]
– In[2]:= a = 8; b = 100; n = 2;λ = 0.01;
– In[3]:= ψ[n_, x_] := HermiteH [n, x]Exp[− x2

2 ]√
2nn!√π ;

– In[4]:= Set Precision[N [(∫ ∞
−∞(λ x3 + a Exp[−b x2])Abs[ψ[n, x]]2 dx

)

+ (2 n + 1)−
(
λ2

(
15
4

) (
n2 + n + 11

30

))], 15]
– Out[4]:= 5.38786294511245
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3 Gaussian asymmetric double-well potential

By substituting Eq. (17) into Schrödinger equation and multiplying by − 2m
h̄2 , we get

d2ψ(x)

dx2 +
(

2m E

h̄2 − m2ω2x2

h̄2 − 2m λ

h̄2 x3 − 2ma

h̄2 e−bx2
)
ψ(x) = 0. (24)

Substituting x = αξ and multiplying by α2 into Eq. (24), we obtain

d2ψ(ξ)

dξ2 +
(

2m E

h̄2 α2− m2ω2ξ2

h̄2 α4− 2m λ

h̄2 ξ3α5 − 2ma

h̄2 α2e−bα2ξ2
)
ψ(ξ) = 0. (25)

From Eq. (25), we set ε = 2E
h̄ω ,m, h̄, ω = 1, α4 = h̄2

m2ω2 , so that Eq. (25) become

d2ψ(ξ)

dξ2 +
(
ε − ξ2 − 2 λ ξ

3 − 2ae−bξ2
)
ψ(ξ) = 0. (26)

Also, the potential in terms of the new variable and parameter is given by

V (ξ) = ξ2 + 2 λ ξ
3 + 2ae−bξ2

. (27)

We can find the numerical solution to Eq. (26) by dividing ξ into many small seg-
ments, each of 	ξ in length. The second derivative in Eq. (26) can be approximated
in finite difference [11–14] form as follows,

d2ψ(ξ)

dξ2 ≈ ψi+1 + ψi−1 − 2ψi

(	ξ)2 . (28)

By substituting Eq. (28) back into Eq. (26), we obtain in case of case Gaussian asym-
metric double-well potential

ψi+1 = 2ψi − ψi−1 − (	ξ)2
(
ε − ξ2 − 2 λ ξ

3 − 2ae−bξ2
)
ψi ; i = 2, 3, 4, . . . ,

(29)

where ξi+1 = 	ξ + ξi or ξi = 	ξ + ξi−1. The special potential given by Gaussian
symmetric and asymmetric double-wells potential has been used in evaluate Eq. (29)
in mathematica program (see Sect. 4).

4 Numerical shooting method and result

We define the new variables for using in evaluating the excited-state energy eigen-
values and wave-function of the Gaussian symmetric and asymmetric double-wells
potential.
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Table 1 Comparison of energy spectrum of the potential V (x) = 1
2 mω2x2+λ x3+ae−bx2

(the Gaussian
asymmetric double-well potential) obtained from numerical shooting method (NSM), perturbation theory
(PT)

b State Energy via NSM Energy via PT %Difference

100 n = 0 2.030752497940 1.795892252168 12.274996

n = 1 3.011425504799 3.006993982695 0.147265

n = 2 5.703883913835 5.387862945125 5.698308

n = 3 7.008022840507 7.006952552143 0.015274

n = 4 9.513471357524 9.279455352879 2.490469

250 n = 0 1.759494695253 1.504818022478 15.603693

n = 1 2.998868630499 3.001124274989 0.075188

n = 2 5.470492753899 5.248090508809 4.149844

n = 3 6.986339025945 6.998356197197 0.171862

n = 4 9.325937503576 9.178744998467 1.590868

500 n = 0 1.678894931262 1.357276141287 21.185815

n = 1 2.996074668133 2.999825900482 0.125127

n = 2 5.408920830023 5.275608056092 2.495436

n = 3 6.981444921847 6.997360942442 0.227716

n = 4 9.278393393755 9.241676504791 0.396509

Setting a = 8, N = 100 and λ = 0.01 at rang 5(ξmax = 5), ξmin = −5. All energies are in the h̄ω/2 unit

1. ξmin is the begin position in the study range.
2. ξmax is the ultimate position in the study range.
3. ξ is any position in the study range.
4. nn is a number of tiny bars in the study range.
5. 	ξ is the length of tiny bars so that

	 ξ = ξmax − ξmin

nn
. (30)

4.1 Logic of the numerical shooting method calculation of energy for the Gaussian
asymmetric double-well potential

– Input values ξmin, ξmax , a, b,λ in mathematica program.
– Input the period amount.
– Input Eq. (29) into mathematica program.
– The next task is to calculate wave-function in Eq. (29) (ψi+1) so that it approaches

zero as closely as desired. Normally, we assign a small value as the standard to
make sure wave-function in Eq. (29) get close enough to zero. For example, if
|ψi+1| ≤ 10−6, we stop the calculation and accept the final energy as the numerical
solution(see also the flowchart Fig. 3 and see Tables 1, 2, 3 and 4).

– Plot wave-function by the graph related to i .
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Table 2 Comparison of energy spectrum of the potential V (x) = 1
2 mω2x2+λ x3+ae−bx2

(the Gaussian
asymmetric double-well potential) obtained from numerical shooting method (NSM), perturbation theory
(PT)

b State Energy via NSM Energy via PT %Difference

100 n = 0 2.415588567393 2.492418285315 3.130791

n = 1 3.024729152256 3.013890280053 0.358985

n = 2 6.127407500865 5.720332084586 6.871782

n = 3 7.036757569574 7.017093847767 0.279834

n = 4 9.903111104965 9.530661599149 3.833013

250 n = 0 2.117094923749 1.946654104647 8.388354

n = 1 3.002145910869 3.002884578106 0.024602

n = 2 5.798074677121 5.467258766517 5.873167

n = 3 6.996338500455 7.000975682244 0.066258

n = 4 9.601989218593 9.341829684625 2.746643

500 n = 0 2.016313919871 1.670013077413 18.788395

n = 1 2.996930367460 3.000450125903 0.117377

n = 2 5.700336425099 5.331354167672 6.689496

n = 3 6.986995293759 6.997360942442 0.148246

n = 4 9.518838220835 9.241676504791 2.954735

Setting a = 15, N = 100 and λ = 0.01 at rang 5(ξmax = 5), ξmin = −5. All energies are in the h̄ω/2 unit

For example, numerical evaluation of energy eigenvalue of the numerical shooting
method for the Gaussian asymmetric double-well potential [16,17].

– In[1]:= ξmin = −5; ξmax = 5; nn = 100; ξmax = 5 	ξ = N
(
ξmax −ξmin

nn

)
ψ1 =

0; N [ψ2 = 	ξ ]; ξ1 = −5; ξ2 = ξ1 + 	ξ ; λ = 0.01; a = 15; b = 100;

– In[2] := ε = 6.12740750086522874260515404980405318459
– Out[2] = 6.12740750086522874260515404980405318459

– In[3] := N [T able[ψi+1 = 2ψi − ψi−1 − (	ξ)2(ε − (ξi+1 = ξi + 	ξ)2 −
(2 λ(ξi+1 = ξi + 	ξ)3)− 2ae−b(ξi+1=ξi +	ξ)2)ψi , {i, 2, 99}]]

– Out[3] = {0.214701, 0.359215, 0.550736, 0.809998, 1.16264, 1.64053, 2.28298,
3.13785, 4.26233, 5.72338, 7.59738, 9.96897, 12.9287, 16.5691, 20.9794,
26.2381, 32.4039, 39.5051, 47.5278, 56.4035, 65.9976, 76.0992, 86.4146,
96.5659, 106.095, 114.478, 121.144, 125.504, 126.994, 125.112, 119.472,
109.847, 96.2133, 78.7839, 58.0281, 34.6718, 9.6783, −15.7937, −40.4527,
−62.9548, −81.9958, −96.4088, −105.257, −107.917, −104.135, −94.0697,
−78.7945, −67.3952, −72.0849, −80.3204, −84.108, −82.8212, −76.5932,
−65.8654,−51.3417,−33.9272, −14.6545, 5.39537, 25.1697, 43.7129, 60.2223,
74.0859, 84.9026, 92.4847, 96.8431, 98.1616, 96.7602, 93.0557, 87.5204,
80.6441, 72.9014, 64.7256, 56.4909, 48.502, 40.9904, 34.1168, 27.9772,
22.6127, 18.0198, 14.1619, 10.9792, 8.3983, 6.33968, 4.72357, 3.47429,
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Table 3 Comparison of energy spectrum of the potential V (x) = 1
2 mω2x2+λ x3+ae−bx2

(the Gaussian
asymmetric double-well potential) obtained from numerical shooting method (NSM), perturbation theory
(PT)

λ State Energy via NSM Energy via PT %Difference

0.02 n = 0 2.012662086855 1.669600577413 18.633191

n = 1 2.995727978026 2.997787625903 0.068729

n = 2 5.663388038380 5.324191667672 6.174178

n = 3 6.992050375342 6.983448442442 0.123100

n = 4 9.403167030215 9.218764004791 1.980493

0.03 n = 0 2.006522642657 1.668913077413 18.371132

n = 1 2.993649715885 2.993350125903 0.010008

n = 2 5.602334684017 5.312254167672 5.315464

n = 3 6.997520158626 6.960260942442 0.533885

n = 4 9.222265911102 9.180576504791 0.453076

0.04 n = 0 1.997810541999 1.667950577413 17.996806

n = 1 2.990573277036 2.987137625903 0.114949

n = 2 5.517408945459 5.295541667672 4.103732

n = 3 6.998661517352 6.927798442442 1.017675

n = 4 8.984492237866 9.127114004791 1.574921

0.05 n = 0 1.986394409736 1.666713077413 17.501885

n = 1 2.986301459524 2.979150125903 0.239758

n = 2 5.407960247924 5.274054167672 2.507132

n = 3 6.987326605618 6.886060942442 1.459855

n = 4 8.693816953897 9.058376504791 4.107206

Setting a = 15, N = 100 and b = 500 at rang 5(ξmax = 5), ξmin = −5. All energies are in the h̄ω/2 unit

2.52294, 1.80901, 1.28084, 0.895514, 0.6182, 0.421216, 0.283004, 0.187062,
0.120947, 0.0753685, 0.0433854, 0.0196996, 1.27722 ∗ 10−7}

– In[4]:= SetPrecision[1/2 (6.12740750086668393412807543827944267713 +
6.12740750086377355108223266132866369206), 15]

– Out[4]= 6.12740750086523

– In[5]:={0, 0.1, 0.21470075249913478‘, 0.3592151359669389‘,
0.5507359541249702‘, 0.8099978040663655‘, 1.162643592083485‘,
1.6405346087920323‘, 2.2829849041988446‘, 3.1378480532215245‘,
4.262333698699565‘, 5.723382270449154‘, 7.597381601120093‘,
9.96897390883968‘, 12.928683090757184‘, 16.569099396323054‘,

20.979400976333142‘, 26.238078587028188‘, 32.4038675777825‘,
39.505082506428295‘, 47.52779002639605‘, 56.40353226232009‘,
65.9976030929712‘, 76.09915094245416‘, 86.41459257731142‘,
96.56592641902226‘, 106.09548433042632‘, 114.47841794639844‘,
121.14375458399813‘, 125.504176831302‘, 126.99380712386751‘,
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Table 4 Comparison of energy spectrum of the potential V (x) = 1
2 mω2x2+λ x3+ae−bx2

(the Gaussian
asymmetric double-well potential) obtained from numerical shooting method (NSM), perturbation theory
(PT)

λ State Energy via NSM Energy via PT %Difference

0.06 n = 0 1.972080221774 1.665200577413 16.874124

n = 1 2.980523143789 2.969387625903 0.374309

n = 2 5.271534494613 5.247791667672 0.451413

n = 3 6.947570219636 6.835048442442 1.632807

n = 4 8.353151379526 8.974364004791 7.170245

0.07 n = 0 1.954581824163 1.663413077413 16.095586

n = 1 2.972731590932 2.957850125903 0.501855

n = 2 5.102194552193 5.216754167672 2.220374

n = 3 6.842390605435 6.774760942442 0.9933012

n = 4 7.978600680828 8.875076504791 10.638341

0.08 n = 0 1.933463447654 1.661350577413 15.139190

n = 1 2.962030096806 2.944537625903 0.592306

n = 2 4.886537969718 5.180941667672 5.848608

n = 3 6.589930755645 6.705198442442 1.733984

n = 4 7.630777323246 8.760514004791 13.784596

0.09 n = 0 1.908011031137 1.659013077413 13.961103

n = 1 2.946560055744 2.929450125903 0.582366

n = 2 4.593166601029 5.140354167672 11.243364

n = 3 6.119489237294 6.626360942442 7.953517

n = 4 7.380085182189 8.630676504791 15.621884

Setting a = 15, N = 100 and b = 500 at rang 5(ξmax = 5), ξmin = −5. All energies are in the h̄ω/2 unit

Fig. 2 The wave-function of
Gaussian asymmetric
double-well potential in case of
second excited-state energy via
numerical shooting method
(ε2), a = 15, b =
100, λ = 0.01 at range
5(ξmax = 5)

125.11227568564995‘, 119.47231205642201‘, 109.84714934139572‘,
96.21330439653738‘, 78.78393358970975‘, 58.02807860223384‘,
34.67178376451662‘, 9.678298565468655‘, −15.793684376271925‘,
−40.452702023765305‘, −62.95478665558926‘, −81.99583903216717‘,
−96.4088269141907‘, −105.25736001994633‘, −107.91685771911497‘,
−104.13513906360902‘, −94.06965077062246‘, −78.79449271531726‘,
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Fig. 3 The flowchart schematic energy eigenvalue and wave-function evaluation procedures

−67.39520087772728‘, −72.08489070965042‘, −80.32043324064043‘,
−84.10800822169212‘, −82.82120811462845‘, −76.59319192977884‘,
−65.86539656741367‘, −51.34172076807657‘, −33.92722499313133‘,
−14.65447827691688‘, 5.395370143474243‘, 25.16965502445812‘,
43.7129455634949‘, 60.22233940732602‘, 74.08588434103551‘,
84.9026269069607‘, 92.48465792192599‘, 96.84314774480457‘,
98.16158831549289‘, 96.76019949880242‘, 93.0556978037494‘,
87.52041133012293‘, 80.64414805339048‘, 72.90140574330432‘,
64.7255798740233‘, 56.490900652542294‘, 48.50200910249418‘,
40.99043188635519‘, 34.11676929085374‘, 27.97717419106913‘,
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(a) (d)

(b)

(c) (f)

(e)

Fig. 4 Plot of several functions involving wave-functions of the Gaussian asymmetric double-well potential
via numerical shooting method. a wave-function a = 15, b = 500,λ = 0.01, e = 5.7003364. b wave-
function a = 15, b = 500,λ = 0.02, e = 5.6633880. c wave-function a = 15, b = 500,λ = 0.03, e =
5.6023346. d wave-function a = 15, b = 500,λ = 0.04, e = 5.5174089. e wave-function a = 15, b =
500,λ = 0.05, e = 5.4079602 f wave-function a = 15, b = 500,λ = 0.06, e = 5.2715344

22.61265103110893‘, 18.019805504091874‘, 14.16188197707348‘,
10.979190255705477‘, 8.398304457965299‘, 6.339681709946219‘,
4.723574609432114‘, 3.4742867327686353‘, 2.5229416131309383‘,
1.809006119223058‘, 1.2808369662058587‘, 0.8955143406078796‘,
0.6181998115621612‘, 0.42121634517981693‘, 0.2830040686830447‘,
0.1870620510684105‘, 0.1209472505274131‘, 0.0753684616125766‘,
0.04338542905582301‘, 0.019699613593310288‘, 1.2772152127235592‘ ∗− 7}

– Out[5]={0, 0.1, 0.214701, 0.359215, 0.550736, 0.809998, 1.16264, 1.64053,
2.28298, 3.13785, 4.26233, 5.72338, 7.59738, 9.96897, 12.9287, 16.5691,
20.9794, 26.2381, 32.4039, 39.5051, 47.5278, 56.4035, 65.9976, 76.0992,
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(a) (d)

(b)

(c)

(e)

(f)

Fig. 5 The wave-function for ground-state energy via numerical shooting method (a = 8, a = 15). a
wave-function a = 8, b = 100,λ = 0.01, e = 2.0307525. b wave-function a = 8, b = 250,λ =
0.01, e = 1.7594946. c wave-function a = 8, b = 500,λ = 0.01, e = 1.6788949. d wave-function
a = 15, b = 100,λ = 0.01, e = 2.4155885. e wave-function a = 15, b = 250,λ = 0.01, e = 2.1170949.
f wave-function a = 15, b = 500,λ = 0.01, e = 2.0163139

86.4146, 96.5659, 106.095, 114.478, 121.144, 125.504, 126.994, 125.112,
119.472, 109.847, 96.2133, 78.7839, 58.0281, 34.6718, 9.6783, −15.7937,
−40.4527, −62.9548, −81.9958, −96.4088, −105.257, −107.917, −104.135,
−94.0697, −78.7945, −67.3952, −72.0849, −80.3204, −84.108, −82.8212,
−76.5932, −65.8654, −51.3417, −33.9272, −14.6545, 5.39537, 25.1697,
43.7129, 60.2223, 74.0859, 84.9026, 92.4847, 96.8431, 98.1616, 96.7602,
93.0557, 87.5204, 80.6441, 72.9014, 64.7256, 56.4909, 48.502, 40.9904,
34.1168, 27.9772, 22.6127, 18.0198, 14.1619, 10.9792, 8.3983, 6.33968,
4.72357, 3.47429, 2.52294, 1.80901, 1.28084, 0.895514, 0.6182, 0.421216,
0.283004, 0.187062, 0.120947, 0.0753685, 0.0433854, 0.0196996, 1.27722 ∗
10−7}
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(a) (d)

(e)(b)

(c) (f)

Fig. 6 The wave-function for ground-state energy via numerical shooting method (λ = 0.02−λ = 0.07). a
wave-function a = 15, b = 500, e = 2.0126620, n = 0,λ = 0.02 b wave-function a = 15, b = 500, e =
2.0065226, n = 0,λ = 0.03 c wave-function a = 15, b = 500, e = 1.9978105, n = 0,λ = 0.04 d
wave-function a = 15, b = 500, e = 1.9863944, n = 0,λ = 0.05 e wave-function a = 15, b = 500, e =
1.9720802, n = 0,λ = 0.06 f wave-function a = 15, b = 500, e = 1.9545818, n = 0,λ = 0.07

– In[6]:= List Plot[%, Plot Joined → T rue]
– Out[6]= graph see Fig. 2

5 Conclusion

The numerical shooting method [12] is generally regarded as one of the most efficient
methods that give very accurate results because it integrates the Schrödinger equation
directly, though in the numerical sense (Fig. 3).

case 2: The Gaussian asymmetric double-well potential.
The energy eigenvalue at range 5 (ξmax = 5) are in harmony. From Tables 1, 2, 3 and
4 the excited-state energy eigenvalue in case of the numerical shooting method a little
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(a) (d)

(e)(b)

(c) (f)

Fig. 7 Plot of several functions involving wave-functions of the Gaussian symmetric double-well potential
via numerical shooting method. a–f is plot of the wave-functions for excited-state (n = 1, n = 3) of
potential. a wave-functions a = 15, b = 500, e = 2.9957279, n = 1,λ = 0.02. b wave-functions a =
15, b = 500, e = 6.9920503, n = 3,λ = 0.02. c wave-functions a = 15, b = 500, e = 2.9936497, n =
1,λ = 0.03. d wave-functions a = 15, b = 500, e = 6.9975201, n = 3,λ = 0.03. e wave-func-
tions a = 15, b = 500, e = 2.9905732, n = 1,λ = 0.04. f wave-functions a = 15, b = 500, e =
6.9986615, n = 3,λ = 0.04

is different from the perturbation theory. From Tables 1, 2, 3 and 4 the ground-state
energy eigenvalue in case of the numerical shooting method a increase is different
from the perturbation theory. From Tables 1, 2, 3 and 4, if the value of b has increase,
the energy eigenvalue (ε) has lessen. From Tables 3 and 4, if the value of λ has
increase the energy eigenvalue (ε) has little. Figure 4 shows sketches of the numer-
ical shooting method wave-functions for second excited-state energy of a Gaussian
asymmetric double-well potential. The wave-function of a particle whose energy ε
is less than the Gaussian asymmetric double-well potential barrier height (a). Note
that wave-function decays exponentially within region barrier show Fig. 1. The n =
even case is shown in Figs. 4, 5 and 6. In this case, the wave-function has split up

123



J Math Chem (2012) 50:2103–2119 2119

asymmetric nodes. The n = odd case is shown in fig. 4–18 of the Ref. [18] (see Fig. 7).
In this case, the wave function similar to in case of a typical harmonic oscillator and
the wave-function has not split up asymmetric nodes (see Fig 7). If height b or a
affect the wave-function has split up increase typical asymmetric nodes. From Fig. 5,
if the value of a has increase, the wave-function for ground-state energy has split up
asymmetric increase nodes (Setting b = 500,λ = 0.01 every-case). From Fig. 5, if
the value of a has increase, the wave-function (ψ(ξ)) for ground-state energy lessen.
From Fig. 6, if the value of λ has increase, the wave-function (ψ(ξ)) for ground-state
energy lessen.
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